1) Ciurul lui Eratostene: Să se formeze un vector care să conţină elementele prime mai mici decât un număr dat n, n 2) Într-o închisoare cu n celule se află, la un moment dat, n deţinuţi. Se ia hotărârea să fie eliberaţi anumiţi deţinuţi, alegerea lor făcându-se într-un mod special. În închisoarea aceea erau tot n gardieni. Procedeul de determinare a deţinuţilor ce vor fi eliberaţi este următorul: gardianul k pleacă de la celula k şi mergând din k în k celule, schimbă starea uşilor pe la care trece,1 3) Să se formeze vectorul primelor n elemente ale şirului lui Fibonacci: 0, 1, 1, 2, 3, 5, 8, 13,21,.... (f[1]=0, f[2]=1, f[i]=f[i-1]+f[i-2]). 4) Se introduc n numere întregi. Elementele diferite să se memoreze într-un alt vector. Să se afişeze acest nou vector. Exemplu: Date de intrare: n=4 numere: 1 2 2 1 Date de ieşire: 1 2. 5) Să se formeze şi să se afişeze vectorul care să conţină elementele nenule dintr-un vector dat. 6) Să se extragă dintr-un vector elementele care au ultima cifră ...